Functions spaces usefull for 3D periodic Navier-Stokes equations

نویسنده

  • R. Lewandowski
چکیده

This work will be the first chapter of a book in progress. This project aims to study the 3D periodic Navier-Stokes equations, existence and regularity up-date results. We also shall study some LES related models like Leray-alpha, Bardina, ADM and deconvolution models, including the most recent results on these models. We have take care in this work to make rigorous the mathematical foundations of functional analysis that we shall use for studying the 3D periodic Navier-Stokes equations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Some Classes of Time-Periodic Solutions for the Navier-Stokes Equations in the Whole Space

For the 3D Navier–Stokes problem on the whole space, we study existence, regularity and stability of time-periodic solutions in Lebesgue, Lorentz or Sobolev spaces, when the periodic forcing belongs to critical classes of forces.

متن کامل

On the convergence of statistical solutions of the 3D Navier-Stokes-α model as α vanishes

In this paper statistical solutions of the 3D Navier-Stokes-α model with periodic boundary condition are considered. It is proved that under certain natural conditions statistical solutions of the 3D Navier-Stokes-α model converge to statistical solutions of the exact 3D Navier-Stokes equations as α goes to zero. The statistical solutions considered here arise as families of time-projections of...

متن کامل

Global Existence and Uniqueness Theorem for 3D – Navier-Stokes System on T3 for Small Initial Conditions in the Spaces Φ(α)

We consider Cauchy problem for three-dimensional Navier-Stokes system with periodic boundary conditions with initial data from the space of pseudo-measures Φ(α). We provide global existence and uniqueness of the solution for sufficiently small initial data.

متن کامل

Smooth Solutions to the 3D Navier-Stokes Equations Exist

In 1999, J.C. Mattingly and Ya. G. Sinai used elementary methods to prove the existence and uniqueness of smooth solutions to the 2D Navier-Stokes equations with periodic boundary conditions. And they were almost successful in proving the existence and uniqueness of smooth solutions to the 3D Navier-Stokes equations with periodic boundary conditions using the same strategy. In this paper, we mo...

متن کامل

Sufficient Conditions for the Regularity to the 3d Navier–stokes Equations

In this paper we consider the three–dimensional Navier–Stokes equations subject to periodic boundary conditions or in the whole space. We provide sufficient conditions, in terms of one direction derivative of the velocity field, namely, uz , for the regularity of strong solutions to the three-dimensional Navier–Stokes equations.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008